式中,EI为等代悬臂柱的刚度; 
为等代悬臂柱的计算长度,其值等于多层排架的高度。
(3)作用于多层排架结构上的竖向荷载值,如板柱的自重、施工设备自重、施工话荷载,它们均可折算为作用在柱顶的荷载,叫做折算荷载值。折算荷载值等于临界荷载值,说明该多层排架处于失稳的临界状态,大于则失稳,小于为稳定;
(4)各层楼板的位置,不影响多层排架结构的临界荷载值,即楼板位置不会改变该多层排架的高度和所有单柱的刚度。因为楼板的自重荷载值折算到柱顶的折算荷载值是随着楼板的位置变化的,楼板位置越高其折算荷载值越大,所以楼板位置只影响多层排架结构稳定所处的状态。楼板连接柱子后起平均作用,即中间柱承受荷载大可能达到或超过临界荷载值,处于失稳状态;而边柱和角柱承受荷载小,还未处于失稳状态,由于楼板的作用,边柱和角柱帮助中间柱,使中间柱不失稳或一起(群柱)失稳。
(5)如果柱顶折算荷载值大于该等代悬臂柱的临界荷载值,即临界荷载值不够,则可采取下列措施坛加临界荷载值:
① 将最低一层或几层楼板先提升到设计标高,浇筑混凝土柱帽,板柱节点由铰接改为刚接。此时临界荷载值:
 (1)
式中,
 <
 。当然,这时 值与板柱刚节点位置有关;
② 将一层或几层楼板与己浇筑的混凝土内竖筒或剪力墙做有效的临时连接,要求被连接的内竖筒或剪力墙的刚度是等代悬臂柱刚度4.5倍以上。此时的临界荷载值:
 (2)
式中, 
<
 ,当然,这时 值与内竖筒或剪力墙连接位置有关。
以上两项措施可分别采用或同时采用。这两项措施的实质是:第①项是改变了结构内部状态,由铰接改为刚接;第②项是不改变结构内部状态,而改变了结构的边界条件,即外部加了一个约束。本来是一个等代悬臂柱,通过楼板与较大刚度的竖向结构连接,改变为一个下端固定上部有一个铰接点的等代柱;
(6)如果考虑侧向荷载作用,如风荷载作用于楼板与柱子时,则多层排架结构的稳定性将急剧下降。
以上内容在此不再深入展开,详见《钢筋混凝土升板结构技术规范》GBJ 130—90。
3 扣件式钢管模板支架类比分析
(1)梁板模板支架的受力特性及其边界条件 梁板模板采用扣件式钢管作支架(以下简称立杆),在混凝土浇筑施工过程中承受永久荷载和可变荷载,处于偏心受压状态。当荷载经过横梁和扣件传至立杆时,其初始偏心距达53mm;若立杆直接支撑模板,则立杆处于轴心或小偏心受压状态。
扣件式钢管模架结构的立杆,其下端的边界条件可以假定是铰接(仅在压力作用下)的,而不象升板结构柱是固定的;模架结构的上端与梁板模板连接,在压力作用下也可假定为铰接。模架结构的立杆之间采用与立杆相同尺寸的钢管用扣件连接,只能视为铰接。所以这样的模板支架是两端铰接的多层排架,它的稳定性可以简化为一根两端铰接等代柱的稳定性,等代柱的刚度等于该多层排架的单柱(立杆)刚度总和。
(2)两端铰接多层排架的稳定临界荷载近似值 查《Handbook of Structural Stability》一书可得:
 (3)
式中,EI为多层排架立杆的总刚度,或为等代柱的刚度; 为等代柱的计算长度,其值为多层排架柱的高度。
(3) 关于判别等代柱的稳定状态 作用于立杆上的竖向荷载值,如模架的梁柱和扣件自重、模板及混凝土梁板自重、施工活荷载等。模架梁柱和扣件自重折算到柱顶的折算荷载值比直接作用在柱顶的模板及混凝土梁板自重和施工活荷载总和要小得多,可计可忽略不计。这样,由柱顶的模板及混凝土梁板自重与施工活荷载得到的计算荷载值,可直接(忽略不计时)用来判别等代柱的稳定状态。
(4)计算临界荷载值时的计算长度 模架立杆之间的横梁(钢管) ,其作用与升板结构的楼板相同,只起到保证所有立柱一起失稳(群柱)的作用,而不能增加群柱(等代柱)的临界荷载值,即不能用任意上下两道横梁之间的距离(步距)计算临界荷载值时的计算长度。如果横梁与已浇筑的混凝土柱或剪刀墙相连接,则另论。
(5) 对于楼层的层高太高,临界荷载值不够的情况 如果某楼层的层高太高,即模架立杆太高,致使临界荷载值不够。对于这种情况,则应想办法将一道或几道横梁与已浇筑的混凝土柱或剪刀墙加以可靠连接,增加一个或几个铰接点边界条件,如在离下端1/3层高处加一个铰接点,则临界荷载值:
与式(3)比较可知,计算长度打了0.543折扣,增大了临界荷载值,是原来值的3.39倍。
(6)有侧向荷载的情况 如果有侧向荷载,如风荷载作用在立柱和横梁上,则临界荷载值下降。但有时模板支架不考虑风荷载。
经过以上的比较分析可知:梁板模板支架结构的临界荷载,在横梁与己浇筑的柱子或剪力墙之间不做有效连接的情况下,计算立杆临界荷载值时的计算长度是不能随便采用横梁之间的步距的。
4 当前扣件式钢管模板支架的设计计算问题
(1)我們在具体设计计算时,要充分注意益德清教授在《扣件式钢管脚手架与模板支架的设计计算》一文中最后提出的,即:① 立杆内力分析应按立杆布置的实际工况,不应平均分担荷载;② 空间高、跨度大的模板支架立杆计算长度目前宜按 L0 =Kμh 进行计算,不宜采用 L0 =h+2a;③ 从立杆稳定性计算结果比较,采用规范方法相对来说是几种方法中安全储备最多的。因此目前施工设计计算应采用规范方法为依据,其它手册介绍的方法可作为补充、对照。(2)应用《建筑施工扣件式钢管脚手架安全技木规范》JGJ 130—2001 第5.6.2条规定的公式计算模架立杆的稳定性时,必须理解5.3.1~5.3.4条文说明,并使支架横梁的布置满足第6.4节关于连墙杆设置的要求。否则有关计算公式不能用,因为公式是在设置连墙杆条件下经原型脚手架整体稳定性试验基础上取得的。在层高较高,荷载值较大时更应注意连墙杆的设置,否则立杆稳定设计计算的结果是不可靠的。 [参考文献] [1]行业标准JGJ130—2001,建筑施工扣件式钢管脚手架安全技术规范[S].北京:中国建筑工业出版社,2001. [2]国家标准GBJ130—90,钢筋混凝土升板结构技术规范[S].北京:中国建筑工业出版社,1990. [3]Handbook of Structural Stability[M].Column Research Committee of Japan,1971. [4]Α.Φ.斯米尔诺夫著,楼志文译.结构的振动和稳定性[M].北京:科学出版社,1963年. [5]余安东,编著.升板结构设计原理[M].上海:上海科学技术出版社,1980年. [6]何广乾,张维嶽,施炳华.升板建筑群柱稳定性验算中的折算荷载[J].力学与实践,1997年第1卷第1期. [7]益德清,扣件式钢管脚手架与模板支架的设计计算[R].建筑新技术推广应用简报,2003年,第 8、9、10 期.






